Stimulation of ribonucleic acid synthesis by chloramphenicol in a rel + aminoacyl-transfer ribonucleic acid synthetase mutant of Escherichia coli.

نویسندگان

  • C D Yegian
  • R W Vanderslice
چکیده

Escherichia coli strain 9D3 possesses a highly temperature-sensitive valyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.9). Since 9D3 is a rel(+) strain, it cannot carry out net RNA synthesis at high temperature. A 100-mug amount of chloramphenicol (CAP) per ml added in the absence of valine cannot stimulate RNA synthesis. Either 300 mug of CAP or 100 mug of CAP plus 50 mug of valine per ml, however, promotes nearly maximal RNA synthesis. These results can be understood as follows. (i) Valyl-tRNA is required for net RNA synthesis, (ii) the synthetase lesion is incomplete, (iii) the rate of mutant acylation of tRNA(val) at high temperature is valine-dependent, and (iv) the CAP concentration determines the rate of residual protein synthesis. Data are also presented which demonstrate that the rate of net RNA synthesis can greatly increase long after the addition of CAP, if the amount of valyl-tRNA increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of synthesis of the branched-chain amino acids and cognate aminoacyl-transfer ribonucleic acid synthetases of Escherichia coli: a common regulatory element.

Regulation of isoleucine, valine, and leucine biosynthesis and isoleucyl-, valyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined in two mutant strains of Escherichia coli. One mutant was selected for growth resistance to the isoleucine analogue, ketomycin, and the other was selected for growth resistance to both trifluoroleucine and valine. Control of the synthes...

متن کامل

Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid.

The mode of action of the antibiotic pseudomonic acid has been studied in Escherichia coli. Pseudomonic acid strongly inhibits protein and RNA synthesis in vivo. The antibiotic had no effect on highly purified DNA-dependent RNA polymerase and showed only a weak inhibitory effect on a poly(U)-directed polyphenylalanine-forming ribosomal preparation. Chloramphenicol reversed inhibition of RNA syn...

متن کامل

Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli.

Lysyl-transfer ribonucleic acid synthetase (EC 6.1.1.6) was identified as four polypeptide spots after two-dimensional polyacrylamide gel electrophoresis of whole-cell lysates of Escherichia coli. Identification was made by migration with partially purified enzyme preparations, by peptide map patterns, by mutant analysis, and by correlation of spot intensities with changes in enzyme levels unde...

متن کامل

Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.

The regulation of synthesis of valyl-, leucyl-, and isoleucyl-transfer ribonucleic acid (tRNA) synthetases was examined in strains of Escherichia coli and Salmonella typhimurium. When valine and isoleucine were limiting growth, the rate of formation of valyl-tRNA synthetase was derepressed about sixfold; addition of these amino acids caused repression of synthesis of this enzyme. The rate of sy...

متن کامل

Regulation of ribonucleic acid synthesis in Escherichia coli during diauxie lag: accumulation of heterogeneous ribonucleic acid.

The synthesis of ribonucleic acid (RNA) and of protein in Escherichia coli during glucose-lactose diauxie lag have been examined. The rate of RNA synthesis is about 7%, of the corresponding rate during exponential growth and the rate of protein synthesis 10 to 15%. Inhibition of RNA synthesis occurs to the same extent in both rel and rel(+) strains. The RNA which accumulates during 20 min in di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 1971